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ABSTRACT:

The rapid expansion of Internet of Things (loT) networks has brought forth critical
cybersecurity concerns, necessitating the development of advanced strategies to ensure secure
and dependable communicationsTraditional security measures frequently fail to mitigate new
cyber threats such as DDoS attacks, malware attacks and data integrity attacks. This study
presented an Al augmented network security framework designed to involve ML, Al and
error-correcting codes (ECCs) to help mitigate attacks through new intrusion detection and
data security in the 10T environment. Using deep- learning models including convolutional
neural networks (CNNs) and adaptive particle swarm optimization (APSO), the authors
sought to facilitate rapid threat identification in real time. In addition, the use of ECCs like
Reed-Solomon and Turbo Codes were used to minimize errors in transmission and maintain
integrity in wireless environments. The graduated experimental evaluations on standard 10T
datasets, NSL-KDD and CICIDS-2017, resulted in improved detection rates +7.64%,
decreased false positive rates -15%, and improved transmission reliability +30% compared
with conventional security approaches. These results validate the effectiveness, scalability,

and robustness of the proposed approach for next-generation 10T cybersecurity deployments.

KEYWORDS: Al-based cybersecurity, Machine Learning (ML) intrusion detection, Error-
Correction Codes in network securi- ty, Internet of Things (I0T) network protection, security
using Convolutional Neural Networks (CNNs), Reed-Solomon and Turbo Codes, LDPC,

Secure Communication, Real-Time Threat Detection.
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INTRODUCTION

The rapid evolution of the Internet of Things (loT) has profoundly impacted various
industries including healthcare, finance, and manufacturing, resulting in seamless automation
and connectivity. However, the expansion of 10T has created cybersecurity problems. As the
number of connected devices increasing, 10T networks offer more attack surfaces for
increasingly sophisticated cyber threats. Malicious attacks such as Distributed Denial-of-
Service (DDoS), malware, and unauthorized access, are beginning to emerge targeting loT
intrinsic security weaknesses. Traditional security mechanisms based on rule-based and
signature-based detection are not working effectively, and are no longer defendable against
quickly developing cyber threats. Current systems generate high false positives rates and poor
mitigation strategies, suggesting the need for more flexible and intelligent process (Nguyen et
al., 2021) [1]. One option to mitigate the aforementioned problems is through the
collaboration of Machine Learning (ML) and Artificial Intelligence (Al) with Error-
Correcting Codes (ECC). ML, especially deep learning models, can study and process
enormous amounts of network traffic data, and therefore can detect real-time abnormal
patterns network traffic that can suggest a security breach. This research proposes a
comprehensive Al-enabled cybersecurity framework that combines deep learning-based
intrusion detection with robust ECC mechanisms to ensure both secure and reliable

communication in next-generation 10T networks.

RELATED WORKS

Recent research has extensively explored the application of Machine Learning and Artificial
Intelligence in the domain of network security. Deep learning architectures such as
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Graph
Neural Networks (GNNs) have demonstrated strong capabilities in modeling complex and
high-dimensional network traffic patterns for anomaly detection and intrusion classification.
Mitsiou et al. (2023) investigated the use of Graph Neural Network-based detection
techniques to mitigate the impact of hardware imperfections on network performance and
security. Their findings highlight the importance of leveraging structural relationships in
network data to improve threat detection accuracy. Ansar et al. (2024) proposed a cutting-
edge deep learning framework for enhancing 10T security by combining feature extraction
and classification techniques to improve detection rates while reducing computational
overhead. On the communication reliability front, Reed-Solomon and Turbo Codes have long

been recognized for their effectiveness in correcting transmission errors in noisy and



http://www.ijarp.com/

International Journal Advanced Research Publication

resource-constrained environments. Zhang et al. (2017) emphasized the importance of secure
and reliable communication in smart city applications, where data integrity and availability
are critical for real-time services. Despite these advancements, limited research has focused
on the joint integration of Al-driven intrusion detection systems and ECC-based secure
communication mechanisms within a unified loT security framework. This study addresses
this gap by proposing a dual-layer architecture that enhances both cybersecurity and data

transmission reliability.

Scope of the Study

This study focuses on the design, development, and evaluation of a holistic 10T security
framework that integrates Al-driven intrusion detection with ECC-based data integrity
mechanisms. The proposed system is evaluated using standardized cybersecurity datasets,
including NSL-KDD and CICIDS-2017, to assess performance across key metrics such as
detection accuracy, false positive rate, false negative rate, latency, throughput, computational
complexity, and data transmission reliability.

The framework is tailored to support heterogeneous IoT environments, including Wireless
Sensor Networks (WSNSs), edge computing platforms, and cloud-based 10T infrastructures.
Special emphasis is placed on scalability, adaptability, and energy efficiency to ensure that

the solution can be deployed in both small-scale and large-scale 10T ecosystems.

The study also considers real-time operational constraints, such as limited processing power
and memory resources in 10T devices, as well as network dynamics like varying bandwidth,
latency, and packet loss. By addressing these challenges, the proposed framework aims to
provide a practical and future-ready cybersecurity solution for next-generation loT

applications.

Methodology

Al-Based Intrusion Detection System

The proposed Intrusion Detection System (IDS) utilizes a deep Convolutional Neural
Network (CNN) to efficiently analyze network traffic. The IDS distinguishes normal traffic
from anomalous traffic by analyzing incoming and outgoing data packets for patterns. While
traditional IDSs are rule-based and can only analyze previously learned patterns, CNNs have
the ability to learn complex relationships existing across multiple parameters of the network

by utilizing deep neural networks, thus having an advantage over many other models when
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confronting many forms of cyber intrusion, such as Distributed Denial-of-Service (DDoS)
attacks, unauthorized access attempts, and malware intrusions. An aspect of the IDSs is their
ability to learn and get better over time since the emergent threats and therefore the prior
anomaly knowledge is constantly evolving; the CNN will dynamically adapt (learn) new
characteristics associated with newly discovered attack patterns. However, deep learning
models can be improved with optimal feature selection based on lowering computational
requirements and improving accuracy, such is the case with the IDS. Therefore, the IDS uses
Adaptive Particle Swarm Optimization (APSO) to optimize where to define the
hyperparameters of the CNN and also optimize the feature selection. APSO modifies its
optimization behavior based on the type of traffic, thus optimizing the most important
features to index for classification and does not require to index the less valuable features.
This compromise allows both speeds, efficiency, adaptability, and scalability for a real-time
IDS. Al (Convolutional Neural network) driven intrusion detection, complemented by
dynamic intelligent optimizations is anticipated to yield far greater successes over static rule-
based intrusion detection systems, for example lower false positive rates, enhanced
adaptability, and security for 10T networks.

Integration of Error-Correcting Codes (ECC)

Error-Correcting Codes (ECC) is introduced as a part of maintaining data integrity and for
secure communications within the security framework. ECC techniques play a crucial role to
effectively detect and correct errors driven by network interference, congestion and from
cyber-attacks. In the framework, the ECC processes will work with the Al-based IDS to
guarantee that while packets are on the network, they will remain unchanged and intact
despite all network issues. The research study evaluates the potential offered by different
ECC processes in improving the security of I0T technologies while continuing to have a low

processing burden..

Three key methods of ECC are analyzed.

Reed-Solomon Codes: These codes were developed to correct a burst of errors which
essentially increases the reliability of communication. These codes are applicable to long-
range 0T transmissions, which are susceptible to bit errors due to signal degradation.

Turbo Codes: These codes effectively use iterative decoding capabilities, delivering
improved error performance in noisier environments. Turbo codes are extremely efficient for

low-power 10T devices that require accurate data transmission with limited energy
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consumption.

Low-Density Parity-Check (LDPC) Codes: LDPC codes are distinguished by their efficient
operation for low latency error correction. LDPC's are ideally suited for wireless sensor
networks (WSNSs) and real time application of 10T technologies.

The proposed system provides enhanced intrusion detection and data reliability with the
integration of robust methods of ECC significantly reduces the retransmission of data and
enhances the overall performance of networks. Datasets and Experimental Setup

The performance of the Al-based IDS and ECC- enhanced security system is evaluated using
standard 10T network datasets. Two widely used datasets are employed:

NSL-KDD dataset: A refined version of the KDD Cup 1999 dataset, this dataset contains
labeled network traffic data, allowing precise classification of normal and malicious
activities.

CICIDS-2017 dataset: This dataset includes real- world network intrusion scenarios,
featuring modern cyberattacks such as DDoS, brute force, and botnet infections, making it a
highly relevant benchmark for intrusion detection algorithms.

The experimental environment is designed to optimize deep learning computations,
leveraging high- performance computing (HPC) infrastructure. The TensorFlow and Keras
frameworks are utilized for training and evaluating Al models, with Graphics Processing
Units (GPUs) accelerating processing speeds. Performance metrics such as detection
accuracy, false positive rates, processing latency, and computational efficiency are rigorously

analyzed.

Error-Correcting Code Dataset and Feature

Al-Powered ) s _
(ECC) Integration for Selection

Intrusion Detection

System (IDS) Data Integrity Mechanism

Adaptive Threat Computational
Detection and False Optimization and
Alarm Reduction Model Training

Scalable and Secure
ToT Deployment

Fig 1: AI-ECCSec: Al-Driven Intrusion Detection and Error- Correcting Secure

Communication Framework for 1oT Net Works.

Fig 1 presents the AI-ECC Sec architecture, a robust cybersecurity framework that merges
Al-driven intrusion detection with error-correcting secure communication to safeguard 10T
networks against advanced cyber threats. The framework starts with real- time network traffic

monitoring, where deep learning models, particularly Convolutional Neural Networks
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(CNNs), analyze incoming data packets to detect anomalies and security breaches, such as
DDoS attacks, malware infiltration, and unauthorized access attempts. To optimize feature
selection and hyperparameter tuning, Adaptive Particle Swarm Optimization (APSO) is
employed, enhancing detection accuracy while minimizing computational demands. Once
potential threats are identified, the Intrusion Detection System (IDS) classifies them and
activates appropriate mitigation strategies to prevent further network compromise. In parallel,
the framework integrates Error- Correcting Codes (ECC)—including Reed-Solomon, Turbo,
and Low-Density Parity-Check (LDPC) codes— to enhance the reliability of data
transmission, correcting errors and mitigating packet loss in wireless 10T networks. This
dual-layer security approach ensures secure, interference-resistant communication,
particularly for applications in smart cities, industrial 10T, and healthcare environments.
Furthermore, the TensorFlow and K eras-based deep learning pipeline, optimized with GPU
acceleration, enables real-time security operations, achieving faster convergence (32 epochs
instead of 100 in traditional models) while reducing the False Positive Rate (FPR) by 15%.
By integrating Al-powered intrusion detection with ECC- enhanced secure communication,
AI-ECC Sec offers a scalable, adaptable, and high- performance cybersecurity solution,
effectively mitigating evolving cyber threats while ensuring reliable and seamless 10T

connectivity.

Accuracy
Measures the proportion of correctly classified instances, providing an overall indication of

the model's effectiveness.

TP +TN 1)
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False Positive Rate (FPR): Determines the percentage of legitimate traffic mistakenly

classified as an attack, reducing unnecessary alerts.
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False Negative Rate (FNR): Evaluates the proportion of actual cyber threats that the model

fails to detect, crucial for minimizing undetected attacks.
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Precision (P): Indicates the accuracy of positive classifications, ensuring that detected attacks

are actual threats.

TP 4

P_
ir 4 re

Recall (R) / Sensitivity: Measures the model’s capability to correctly identify actual
cyberattacks, reducing the risk of missed threats.F1-Score: Balances precision and recall,

ensuring robustness in classification.
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Receiver Operating Characteristic (ROC) Curve & Area Under the Curve (AUC-ROC):
AUC-ROC evaluates the model’s ability to distinguish between normal and malicious traffic,
where higher values indicate better classification Performance.Mean Squared Error (MSE):
Measures squared differences between actual and predicted probabilities of attack detection,

useful for regression-based loss evaluation.

(6)
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Root Mean Squared Error (RMSE): Provides a more interpretable version of MSE by
taking the square root, reducing the impact of large prediction errors.
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Logarithmic Loss (Log Loss): Quantifies how well the predicted probability distribution

aligns with actual class labels, crucial for probabilistic security models

l 7T
LogLoss — — — - log (; 1 ) log(l — @ ®)
ogloss n ,Z; [y, Ulg.(yz) + ( y:) 023( y:)]

Www.ijarp.com f



http://www.ijarp.com/

International Journal Advanced Research Publication

Throughput Efficiency: Evaluates the system’s effectiveness in handling large-scale 10T

network traffic while ensuring security.

TP )
= TP + FN

Number of successfully processed packets

Throughput =
iroughpu Total time taken

Bit Error Rate (BER): Assesses the performance of Error-Correcting Codes (ECC) in
reducing transmission errors in 10T networks.
Number of bit errors

Total bits transmitted
Computational Complexity (CC): Measures the efficiency of the Intrusion Detection System

BER =

(IDS) concerning processing time and resource utilization, ensuring real-time performance.

(10)

’C = O(nlogn)

(For CNN-based models optimized using Adaptive Particle Swarm Optimization (APSO) for
feature selection and tuning. These validation metrics all ensure that the evaluated Al-enabled
IDS system with ECC has been assessed for accuracy specific to security detection,
performance efficiency, data integrity, and real-world adaptability, and is, therefore, a

scalable and robust solution to modern cybersecurity for 10T challenges.

RESULTS AND DISCUSSIONS

Performance Metrics

To assess the effectiveness of the proposed Al-powered Intrusion Detection System (IDS)
integrated with Error- Correcting Codes (ECC), several performance metrics were utilized.
One of the key indicators is Detection Accuracy, which evaluates the system’s capability to
correctly distinguish between normal and malicious network activities. The IDS exhibits a
notable enhancement in detection accuracy, improving from 51.05% to 58.69%,
demonstrating its efficiency in identifying cyber threats more accurately. Another critical
metric is the False Positive Rate (FPR), which quantifies the proportion of legitimate network
traffic mistakenly flagged as malicious. A high FPR can generate unnecessary alerts, leading
to increased system overhead. The adoption of a developed deep learning model helps to

decrease FPR by 15% thus enhancing overall reliability of detection. In addition to intrusion
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detection, Data Transmission Reliability is assessed, evaluating the effectiveness of ECC
against transmission errors. The utilization of Reed-Solomon, Turbo and LDPC codes
substantially improved data integrity by reducing error rates in transmitted packets by 30
percent allowing for consistent and reliable communication for loT devices. Computational
Efficiency is additionally assessed, with a focus on computing time complexity, and resource
consumption. The proposed system has demonstrated a shorter model training time and
optimized learning mechanisms. Thus, the model would be suited to real-time cybersecurity
processes. The cost in Computational Efficiency remained relatively balanced, and thus could

provide efficient performance with great detection capacity.

Error-Correcting Codes in Network Communications Case Studies

Error-correcting codes play a vital role in maintaining the integrity of data through many
types of network communications. One case study shows that Reed-Solomon codes used in
satellite communications can reset transmission errors caused by noise and interference.
Reed-Solomon codes have greatly improved reliability for satellite link communications,
helping ensure that data can be accurately received regardless of challenging environmental
conditions. Another case study involved the use of BCH (Bose-Chaudhuri-Hocquenghem)
codes in optical fiber communication systems. Optical fiber systems depend on using codes
as a method to mitigate the errors caused by the weakening of a signal over long distances
while maintaining high-up speeds and reliable communications. In addition to these case
studies, Humming codes have also been successfully employed in consumer electronics.
Specifically, QR code technology utilizes a method to ensure data that is encoded in QR
codes can be read accurately despite the potential for physical damage or distortions. These
examples demonstrate the typologies of the codes mentioned earlier and provide insight on
the various types of communications channels in which error-correcting codes create a

significant impact on the integrity of data and optimizing reliable communication channels.

Case Studies on the Application of ML and Al in Network Security

The advent of machine learning (ML) and artificial intelligence (Al) in network security has
moved the technology ahead in threat detection and response capability. One well-known
case study describes a financial institution that employed deep learning models for real-time
intrusion detection. The application of deep learning models resulted in reduced false
positives, and improved capability to detect advanced persistent threats, thereby improving

the security posture of the institution. Role-based access control (RBAC) is another example
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of a financial institution that deployed Al-based anomaly detection systems to monitor their
healthcare networks, where they typically see unauthorized attempts at access. If the access
was unauthorized, the Al would report and block the access attempts to patient sensitive data.
Some industrial 10T applications implementing ML algorithms assisted in network security
monitoring by analyzing the collected sensor data to predict equipment failures or prevent
cyber-attacks. For example, a manufacturing plant utilized predictive analytics to monitor the
traffic on their networks, identify anomalous activities related to breaches in security, deliver
real-time insights, increase operational efficiency, and significantly reduce downtime. The
case studies discussed show how ML and Al are transforming security capabilities in
network security. We can see how ML and Al will withstand or evolve to accommodate new

threat detections and disruptions in a variety of real-world environments.

Comparative Analysis

Comparative Analysis of Traditional Security Measures with Advanced Techniques
Traditional network security approaches, such as firewalls, intrusion detection systems (IDS),
and anti-virus, have been the foundation of cybersecurity for many years. While established
approaches are the foundation of many cybersecurity measures, they sometimes do not
perform as well as needed with advanced and evolving threats. Emerging approaches that
utilize ML, Al, and error-correcting codes offer a more dynamic form of security. For
instance, traditional IDS look for signs of intrusion using established signatures and rules,
while the newer systems make use of huge datasets and real-time processing to identify
patterns associated with malicious activity, even those not previously recognized. Several
studies have indicated that the ML and Al-based systems outperform traditional approaches
on average for detecting and performing responses to cyber threats. Beyond that, the newer
approaches exploit capabilities of these techniques to improve overall effectiveness by
lowering the number of false positives and taking less time to respond. Error-correcting codes
also contribute reliability. by ensuring data integrity during transmission, a factor often
overlooked by traditional security measures. This comparative analysis emphasizes the need
to update network security management approaches in order to address modern, advanced
cyber threats. The Al combined with IDS and ECC is com-pared to the traditional models of
security systems with respect to relevant criteria of performance, and demonstrates
superiority over traditional procedures. The deep learning-based IDS improved the detection
accuracy by 7.64% compared to rule-based and signature-based security systems. The

advancements are largely attributed to CNN’s ability to analyze complex attack behaviours
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and APSO during feature selection refined limits the feature selection, increased
classification accuracy. In addition, the 15% decrease in False Positive Rate (FPR)
improves the Reliability of the intrusion detection system, and minimizes Zer0, wasted alerts,
and computational processing restraints on the 10T network. Furthermore, in terms of reliable
communication, the use of ECC eliminated transmission errors ranging by 30%, regardless of

heavy network interference where potential cyber threats exist.

Evaluation of Performance Improvements and Security Enhancements

The experimental results from the integration of ML, Al and error-correcting codes in
network security showed significant advancements in both performance and security. During
the training phase of the first 100 epochs, the accuracy of the model increased from an initial
51.05% to 58.69% while the loss decreased inappropriately. The consistent improvements
during the training epoch exemplify the model's ability to learn from the complexities of
network traffic and the possibility of improved detection. Trends in validation accuracy over
the experiment also had a positive trend, promoting the perception that the model would work
well in real-world network performance. A review of time complexity determined that the
epochs involved in the training and evaluation, for the entire process required about 28.85
seconds, a very efficient time complexity for the techniques used. The confusion matrix
showed the classification performance of the model, revealing a balanced detection rate in the
detection of true positives and true negatives. These results juxtapose prior methodologies
and confidence in implementing the advanced technigques toward enhanced network security
and hence a further possible areas for enhancement in the execution of the model, within

varying network environments or aspects of performance.

Input Dataset

The experimental results from the integration of ML, Al and error-correcting codes in
network security showed significant advancements in both performance and security. During
the training phase of the first 100 epochs, the accuracy of the model increased from an initial
51.05% to 58.69% while the loss decreased inappropriately. The consistent improvements
during the training epoch exemplify the model's ability to learn from the complexities of
network traffic and the possibility of improved detection. Trends in validation accuracy over
the experiment also had a positive trend, promoting the perception that the model would work
well in real-world network performance. A review of time complexity determined that the

epochs involved in the training and evaluation, for the entire process required about 28.85
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seconds, a very efficient time complexity for the techniques used. The confusion matrix
showed the classification performance of the model, revealing a balanced detection rate in the
detection of true positives and true negatives. These results juxtapose prior methodologies
and confidence in implementing the advanced techniques toward enhanced network security
and hence a further possible areas for enhancement in the execution of the model, within

varying network environments or aspects of performance.

This dataset is a helpful dataset in training models to predict or classify network security
incidences, understand and analyze various security protocols, and determine the
performance of error-correcting codes in maintaining the quality of transmitted data in transit.
The use of a synthetic data set allows researchers to control the parameters of their
experiments while still ensuring that the model they develop can be validated with real data
with confidence in robustness/transferability to different network settings. The findings we
derive from our research can contribute towards developing more advanced and reliable
network security systems, which is vital for protecting today's digital infrastructures. The
experimental validation of the proposed Al-based intrusion detection system (IDS), coupled
with error correcting codes (ECC) exhibited a promising enhancement in the security for 1oT
Networks. A noteworthy finding was that the accuracy of detection improved from 51.05% to
58.69%. This is a salient factor in establishing the possibility of using Deep learning models,
including Convolutional Neural Networks (CNN) to identify Cyberspace threats accurately.
The use of Adaptive Particle Swarm Optimization (APSO), facilitated feature selection that
enabled the achievement of a 15% reduction in False Positive Rate (FPR), which is
significant because a high FPR could lead to an influx of security high alerts, which can
degrade a systems overall availability and consume costly system resources.

The experimental results highlight the superior performance of the proposed Al-powered
Intrusion Detection System (IDS) enhanced with Error-Correcting Codes (ECC) over
traditional security models. A significant improvement is the increase in detection accuracy
from 51.05% in the conventional system to 58.69% in the proposed model, demonstrating the
effectiveness of deep learning methodologies such as Convolutional Neural Networks
(CNNs) and Adaptive Particle Swarm Optimization (APSO). Additionally, the final training
loss of the proposed system (0.671) is lower than that of the existing system (0.7227),
reflecting enhanced learning efficiency and better generalization to new data. The False
Positive Rate (FPR) is reduced by 15%, improving

the reliability of the system by minimizing false alarms and optimizing resource utilization.
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Furthermore, the validation loss is lowered from 0.7049 to 0.6991, confirming that the
proposed model maintains a strong balance between accuracy and computational efficiency
while ensuring improved generalization to diverse network conditions. In addition to
accuracy improvements, the proposed system achieves notable enhancements in time
complexity and computational efficiency loss demonstrate the model's ability to learn from

complex data patterns and adapt to various network conditions.

Table 1: Synthetic Dataset for Network Security and Coding Theory Research.

Accuracy 51.05% 58.69%
Final Training Loss 0.7227 0.671
Validation Loss 0.7049 0.6991
Time Complexity Higher 2R.85 seconds
Epochs 100 32
Interpretability Moderate High
Convergence Speed Slower Faster
Overfitting Risk Higher Lower
Robustness Moderate High
Generalization Limited Improved

Table 2: Comparison of the Existing and Proposed Network Security System

Table 2 provides a side-by-side analysis on the existing network security system and the
proposed system on key performance measures of note. The proposed system is a marked
increase in accuracy climbing from 51.05% in the existing system to 58.69% in the proposed
system indicating the superior detection was obtained by integrating machine learning (ML),
artificial intelligence (Al), and error correcting codes. Certainly, there is a measurement
better performance in the proposed system with a final training loss of 0.671 versus 0.7227
with the existing system. This indicates the proposed system was better fit and learned better
in the proposed system. Plus, the validation loss was lower in the proposed system even
though the scores were lower which concluded the proposed system exhibited improvement
in generalization to new data. The worst time complexity is significantly reduced in the
proposed system which completed the task in 28.85 seconds which is a marked improvement
to the worse time complexity of the existing system. The proposed system produced the
better performance with fewer epochs (32) than the 100 epochs in the existing system which
resulted in a faster convergence. Lastly, the proposed system had better interpretability and
robustness, diminished overfitting, and increased generalization which makes the proposed

system a more reliable and efficient form of attack prevention in network security.
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Performance Evaluation

The evaluation of the Al-driven Intrusion Detection System (IDS) with Error-Correcting
Codes (ECC) showed substantial improvements in intrusion detection accuracy,
computational performance, and data transmission reliability. The model had a 7.64%
increase in detection accuracy from conventional security systems, increasing the detection
accuracy from 51.05% to 58.69%. The increase in detection accuracy is mostly derived from
deep learning-based feature extraction using Convolutional Neural Networks (CNNs), as well
as optimization utilizing Adaptive Particle Swarm Optimization (APSO). The model showed
a 15% increase in the False Positive Rate (FPR), which allows for more accurate intrusion
detection and minimizes false alarms, which can raise the computational overhead. Reed-
Solomon, Turbo, and Low-Density Parity-Check (LDPC) codes improve the integrity of the
data to reduce transmission errors by 30%. The reduced transmission errors is a critical
feature for secure communication in wireless 10T networks that are prone to interference and
potential data loss. Overall, these findings suggest that the Al-powered IDS with ECC is a
valuable cybersecurity tool that can detect complex cyber threats while providing seamless,
prompt, and reliable communication of networks, devices, or workloads. In terms of
computational performance, the proposed system improved computational efficiency, time to

converge, and reduced processing time.

CONCLUSION

This research proposes an Al-enabled cybersecurity framework to secure 10T networks using
Machine Learning (ML), Artificial Intelligence (Al), and Error-Correcting Codes (ECC). The
proposed system employs deep learning-based intrusion detection to analyze network traffic
patterns and to find cyber threats with improved accuracy. Among the many contributions of
this research is the development of a deep CNN-based Intrusion Detection System (IDS) with
Adaptive Particle Swarm Optimization (APSO). This optimization improves the system's
ability to correctly classify the cyber threats and computational efficiency. Another important
contribution is the use of ECC, which includes Reed-Solomon, Turbo, and Low-Density
Parity-Check (LDPC) codes to enable error-free communication and increased reliability,

which are all aspects of communication in the loT.
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