

EMPOWERING LEARNERS THROUGH ARTIFICIAL INTELLIGENCE: THE SHIFT TO PERSONALIZED, STUDENT-DRIVEN EDUCATIONAL JOURNEYS

***¹Dr. Sahil Nazir, ²Dr. Sajad Ahmad Mir, ³Mr. Danish Ishfaq**

¹Assistant Professor, Faculty of Management and Commerce, Guru Kashi University, Bathinda Punjab.

²Assistant Professor, Faculty of Management and Commerce, Guru Kashi University, Bathinda Punjab.

³Assistant Professor, Faculty of Health and Applied Sciences, Guru Kashi University, Bathinda Punjab.

Article Received: 27 November 2025, Article Revised: 17 December 2025, Published on: 7 January 2026

***Corresponding Author: Dr. Sahil Nazir**

Assistant Professor, Faculty of Management and Commerce, Guru Kashi University, Bathinda Punjab.

DOI: <https://doi-doi.org/101555/ijarp.7928>

ABSTRACT

The rapid advancement of artificial intelligence (AI) has opened up transformative possibilities in the educational landscape, allowing for a move from traditional teacher-centered models to more personalized, student-driven learning settings. This study investigates how AI-powered solutions—such as adaptive learning platforms, intelligent tutoring systems, learning analytics, and predictive feedback tools—enable students to play an increasingly active part in determining their educational paths. By examining current educational frameworks, the article demonstrates how AI enables personalized learning routes that adapt student specific strengths, challenges, and learning preferences. Such technologies provide real-time feedback, dynamic content delivery, and continuous evaluation, promoting learner autonomy, motivation, and self-regulation. In addition to pedagogical benefits, the use of AI tools promotes inclusive education by identifying learning gaps early on, providing tailored interventions, and responding to varied linguistic, cultural, and cognitive needs. AI's personalization capabilities boost engagement by allowing students to develop at their own speed, explore content that matches their interests, and take ownership of their academic goals. Furthermore, teachers' roles are shifting toward mentorship, facilitation, and data-driven instructional decision-making, aided by AI.

generated insights that highlight patterns in student performance and behavior. However, the transition to AI-powered learning poses serious concerns about data privacy, algorithmic bias, equal access, and the growing digital divide. The study analyzes these problems and underlines the importance of ethical frameworks, inclusive policies, and strong data governance methods to promote responsible AI deployment in educational contexts. Professional development for educators is emphasized as a critical component in enabling them to effectively integrate AI tools while keeping human-centered learning ideals. Overall, the report contends that when used wisely, AI has the potential to democratize learning, promote individualized growth, and build student-centered educational journeys that prepare students for an increasingly complicated, technologically driven world. The study concludes that the future of education will be determined not only by technology advances, but also by politicians, educators, and institution's collective commitment to using AI in ethical, equitable, and pedagogically sound ways.

KEYWORDS: Artificial Intelligence, Personalized Learning, Student-Driven Education, Adaptive Systems, Edu-Tech.

INTRODUCTION

Artificial intelligence (AI) is altering the educational landscape by making personalized, adaptable, and student-centered learning experiences possible on a large scale. According to Coppin (2004), artificial intelligence is the ability of computers to adapt to new environments, navigate dynamic scenarios, resolve complex issues, provide answers to questions, devise effective strategies, and perform a variety of other tasks that require human-like intelligence. Artificial intelligence (AI) has fundamentally altered how humans interact with technology and the global environment (Wang et al., 2023). AI uses data from a system to build models, analyze their complexity, and solve related problems (Haluza & Jungwirth, 2023). AI has the potential to transform the education industry by providing novel perspectives on student learning, improving instructional quality, and providing decisionmakers with a wealth of data to help them make more informed decisions (Chaudhry & Kazim, 2022). AI technology allows for the modeling of complex interactions between students' learning, the knowledge domain, and the tools used to engage with that domain (Alam, 2021). The wealth of knowledge available through e-learning has enabled AI to address difficult issues in the education business and introduce fresh technological techniques (Muktiarni et al., 2019).

Over the last decade, there has been an increased focus on the potential role of artificial intelligence in the education business. This interest has been noticed across a variety of sectors, including academia, government agencies, nonprofit groups, and the corporate sector (Bondarenko et al., 2022). Despite progress, students in higher education continue to face major learning and teaching challenges (Alotaibi & Alshehri, 2023). The 21st century has seen a fundamental transition in education from teacher-centered instruction to personalized, student-driven learning paths. Traditional educational approaches rely heavily on standardized curricula, uniform pace, and conventional examinations, which frequently fail to account for individual students' different learning requirements, interests, and talents. As global education systems work to educate students for quickly changing technological and professional settings, customization has emerged as a significant pedagogical shift. This transition acknowledges that students thrive when they are active participants in their learning experiences, given autonomy, meaningful choices, and opportunity for self-directed growth.

In a personalized learning environment, training is tailored to each learner rather than forcing students to conform to a rigid structure. Students' progress at different rates, engage with information that is relevant to their skills and aspirations, and receive individualized help based on their individual profiles. The emphasis shifts from task completion to mastery, with a concentration on depth of understanding rather than speed. Learning analytics, competency-based progressions, and flexible instructional models that promote individualized attention and responsive teaching tactics all contribute to this setting.

1.3 Theoretical Background

1.3.1 Artificial intelligence: Despite its early stages, artificial intelligence (AI) has progressed with advances in computer and information transmission technology. Coppin (2014) describes artificial intelligence as computers' ability to simulate human intelligence in a variety of circumstances, such as problem solving, answering questions, inventing tactics, adapting to new environments, and dealing with change (Coppin, 2004). One definition is "the study of intelligent behavior in humans, animals, and machines." At the same time, another goal is to incorporate such behavior into an item such as computers and computer-related technology (Whitby, 2008). According to these definitions, artificial intelligence stems from advances and breakthroughs in computer, computer-related, machine, and information and communication technologies, which have enabled computers to mimic or even outperform human performance in specialized activities. Artificial intelligence, like the

introduction of new technology into the classroom, has found widespread use in education. According to Devedic (2004), a number of characteristics are fundamental to AI and Web Intelligence (WI) research, including the use of machine learning to develop distributed intelligence and the goal of establishing a middle ground between Web and intelligent agent technologies. Additional Web Intelligent technologies and AI qualities that make it suitable for application in the classroom (Devedic, 2004; Yang & Shankar, 2023).

According to Wang et al. (2023), artificial intelligence has already found its way into many aspects of the education business, including various departments inside schools and colleges. Efficiency, global learning, customized/personalized learning, better material, and increased efficacy and efficiency in school administration are just a few examples of how AI has enhanced education (Chaudhry & Kazim, 2022). As related technologies develop at a rapid pace, new uses of AI in the classroom are being researched.

1.3.2 Artificial Intelligence in the Education Industry: Before computers and other technologies, both instructors and students had to rely on mechanical aids or the simple application of human effort to gain knowledge. The introduction of microcomputers and personal computers in the 1970s was a watershed point in mass-market computing, ushering in a new era of accessible electronic computing (Flamm, 1988). Campbell Kelly (2018) contends that the widespread availability of electronic computers in the 1960s and 1970s laid the groundwork for the personal computer revolution of the 1980s and 1990s. Since the introduction of personal computers, there have been numerous reasons why individuals and non-governmental organizations (NGOs) have been able to own and utilize computers. Computers would become ubiquitous in many societal and business contexts in the decades that followed these advances.

This shift is more than just a pedagogical one; it reflects a larger commitment to equity, inclusion, and empowerment. Personalized, student-driven learning recognizes students' diverse experiences, aspirations, and cultural backgrounds, making education more relevant, accessible, and meaningful. By embracing this transformation, educational institutions can create environments that encourage independence, curiosity, and prepare students to thrive in a dynamic, interconnected world.

Literature Review

Bhounsole, Chaney, Claeys and Manteufel (2017) describes a concept of robotic service learning that's purpose is an improvement in results of learning. These kind of robotic

services are very helpful for learners to learning with a comfortable environment. According to this study, the concept of service learning used by authors is mainly used to represent the strategy of teaching and learning. This concept of service learning shows service of the meaningful community and teaching responsibilities. **ForeroCorba and Bennasar (2024)** conducted a literature study on the methods and uses of AI and machine learning in the field of education. The full potential of machine learning and artificial intelligence in the classroom is hindered by teachers' inadequate understanding of these fields. This research aims to find ways to apply machine learning and artificial intelligence to enhance educational management and teaching-learning processes across all educational contexts. Web of Science and Scopus were the databases utilised for the bibliographic search. **Rane et al. (2024)** stated that at the front of the AI revolution in education are technologies like Chat Generative Pre-Trained Transformer (ChatGPT), which enhance personalised support for learning and instruction. The study employs a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis to examine ChatGPT's potential in educational settings and draw conclusions on unsolved problems in practice and research. Quick, responsive, and personalised responses are one of ChatGPT's features, which help to improve learning experiences through practical support and personalised tutoring. **Holmes et al. (2021)** asserted that a significant portion of the Artificial Intelligence in Education (AIED) field encompasses using AI methodologies in conventional learning methodologies, often mirroring or automating established educational assumptions and practices. **Limna et al. (2022)** emphasised that the education 32 sector has already witnessed the integration of artificial intelligence. Its implementation of artificial intelligence is a crucial and strategic element in advancing education. Moreover, using artificial intelligence as a digital assistant is experiencing a notable rise. They support educators and learners through various means, such as facilitating students' access to diverse educational resources tailored to their individual learning requirements and academic disciplines. Nevertheless, the progress made in the field of artificial intelligence is not without its share of potential risks, including but not limited to concerns about safety, security, and privacy. The findings of the study conducted by **Abdelwahab et al. (2023)** study artificial intelligence as a new tool in the educational environment with the potential to transform conventional teaching and learning processes. This study offers a comprehensive overview of AI technologies, their potential applications in education, and the difficulties involved. The authors aim to provide insightful information on how AI may be successfully incorporated into the educational setting to benefit teachers and students while promoting responsible and ethical use. In their paper, **Surugiu et al. (2024)** state that educators creating

instructional material must comprehend artificial intelligence's (AI) effects on education. Using artificial intelligence (AI) in the classroom presents both possibilities and problems for teachers and students. It will be a challenge for present and future generations to correctly figure out how to include AI in the learning framework. Students' engagement with AI in the classroom appears lower than anticipated, even if most recognise AI as a helpful tool.

Objectives of the Study

1. To analyze student perceptions of AI-based learning platforms.
2. To study and compare the educational effectiveness before and after the AI-Enabled learning platform.
3. To identify challenges and limitations in adopting AI within educational systems.

Research Methodology

Research Design

- **Quantitative Method:** Survey-based analysis
- **Qualitative Method:** Semi-structured interviews
- **Data collection:** Both Primary and Secondary
- **Primary Data:** Structured Questionnaire
- **Secondary Data:** Review of academic articles, case studies, and institutional reports.

Population and Sample

Population: Students and teachers from higher educational institutions using AI-enabled learning platforms.

Sample Size:

Students: 88

- **Teachers:** 42
- Total sample: **130 participants**

Sampling Technique:

Purposive sampling (as the study requires participants experienced with AI tools).

Data Collection Tools

Questionnaire (Quantitative):

A structured questionnaire with a 5 Likert-scale items (Strongly Agree to Strongly Disagree).

Sections included:

- Accessibility
- Engagement
- Adaptive learning experience
- Autonomy
- Overall satisfaction

Interview Guide (Qualitative):

Semi-structured interviews with teachers and students to explore in-depth perceptions.

Secondary Sources:

Research papers, UNESCO reports, AI in education case studies.

Data Analysis Techniques

Quantitative Analysis:

- Descriptive statistics (mean, percentage, frequency)
- Charts and comparative tables
- Paired T-Test analysis to find out the comparison between conventional and AI driven Education.

Data Analysis and Interpretation

Demographic Profile of Respondents Table 1

01	Gender	Male	79	54.6%
		Female	51	45.4%
		Total	130	100%
02	Residence	Rural	89	68.5%
		Urban	30	23.1%
		Semi-urban	11	8.5%
		Total	130	100%
03	Occupation	Teacher	42	32.3
		Student	88	67.7
		Total	130	100
04	Age	18-25 years	68	52.3%
		25-40 years	37	28.5%
		40-55 years	16	12.3%
		Above 55 years	9	6.9%
		Total	130	100%

Source: Primary Data

Interpretation: From the Table 1, it is clear that from the total 130 respondents, 71 were males and 59 were females. The above table also comprises the overall age group of respondents where it is clear that majority of the respondents were in the age group of 18-25 years, comprising about 52.3% of the total population. As many as 37 respondents were in the age group of 25-40 years comprising 28.5% of the total population. The remaining respondents were in the age group of 40-55 years and above 55 years old comprising 12.3% and 6.9% of the total population respectively. Moreover, majority of the respondents belonged from the rural area comprising about 68.5% of the total population. The remaining 41 respondents were from the urban and semi- urban areas comprising the total of 23.1% and 8.5% of the population respectively. Furthermore, most of the respondents were students comprising 67.7% of the total population and the remaining 32.3% were the university faculty members both from teaching as well as from non-teaching background.

Table 2 Perception of Teachers and Students using AI-based learning platforms.

(1= Strongly Disagree, 2= Disagree, 3= Neutral, 4= Agree and 5= Strongly Agree) and N=130

Perception of Users	N	Min	Max	Mean	S.D
AI-based learning platforms help me understand concepts more clearly by providing personalized explanations	130	1.00	5.00	4.28	.96
The feedback I receive from AI tools is timely and helps me improve my performance	130	1.00	5.00	4.36	.86
Using AI learning platforms allows me to learn at my own pace and level of difficulty	130	1.00	5.00	4.61	.76
I feel more motivated and engaged when using AI-driven educational tools	130	1.00	5.00	3.30	1.40
AI platforms make it easier for me to identify my strengths and areas where I need to improve	130	1.00	5.00	4.13	1.08
Overall, AI-assisted learning enhances the quality of my learning experience compared to traditional methods	130	1.00	5.00	4.26	1.00

Source: Primary Data

Interpretation: The results from the above table have been drawn by using the descriptive analysis to find out the perception of respondents about the AI – driven platform by obtaining

the mean scores using the 5-point Likert scale. The perception of the respondents varied from individual to individual with majority of the respondents showed a positive response towards using AI learning platforms which allowed them to learn at their own pace and level of difficulty which can be depicted from the mean value that came out to be 4.61 followed by the mean score of 4.36 comprising the feedback respondents receive from AI tools was timely and helped them to improve their performance. Moreover, the AI-based learning platforms helped them to understand the concepts more clearly by providing them the personalized explanations and the analytics showed with the mean score of 4.28 obtained from the respondents. Perception regarding AI-assisted learning also enhanced the quality of their learning experiences compared to traditional methods with the mean score obtained as 4.26. Furthermore, perception regarding AI platforms made it easier for respondents to identify their strengths and areas where they need to improve and lastly, the respondents felt more motivated and engaged when using AI-driven educational tools to carry out their operations smoothly with the mean scores obtained as 4.13 and 3.30 respectively.

Table 3 Comparison between conventional and AI-driven Education.

(1= Strongly Disagree, 2= Disagree, 3= Neutral, 4= Agree and 5= Strongly Agree) and N=130

Paired Samples Test					N=130
Comparison between conventional and AI-driven Education		Mean	Std. Deviation	N	P
Pair 1	Improved Student's academic performance BEFORE AI	2.66	1.24	130	.000
	Improved Student's academic performance AFTER AI	3.94	.98		
Pair 2	Improvements in instructional efficiency and support BEFORE AI	2.17	.78	130	.000
	Improvements in instructional efficiency and support AFTER AI	3.97	.88		
Pair 3	Users' ability to personalize their learning pace BEFORE AI	2.39	.91	130	.000
	Users' ability to personalize their learning pace AFTER AI	4.16	.89		
Pair 4	Users' satisfaction with the learning experience BEFORE AI	2.55	.87	130	.000
	Users' satisfaction with the learning experience AFTER AI	4.26	.95		
Pair 5	Effective Learners' time management and task completion behaviors BEFORE AI	2.07	.84	130	.000
	Effective Learners' time	4.53	.59		

management and task completion behaviors AFTER AI				
--	--	--	--	--

Source: Primary Data

Interpretation: The above table attempted to draw a comparison between AI-driven education and Conventional education by seeking the responses from the population using the statistical tool such as the Paired Sample T test. Based on the statements, it was clear that respondents were keen to compare the two phases and showed a positive response towards using the AI –Driven tools as compared to the conventional tools of education. The parameters like Improved Student's academic performance, Improvements in instructional efficiency and support, Users' ability to personalize their learning pace, Users' satisfaction with the learning experience and the Effective Learners' time management and task completion behaviors were taken into account and it was found out after the analysis that all the parameters showed a significant variation across two phases and the conclusion was drawn that AI-Driven tools were most preferred and used tools by the respondents as compared to the conventional tools of education.

Table 4 Challenges and limitations in adopting AI within educational system.

Challenges / limitations	N	Mean	S.D
Lack of proper training for teachers makes it difficult to effectively use AI-based tools in the classroom	130	4.12	.97
I am concerned that AI learning platforms may compromise student data privacy and security	130	3.00	1.25
Limited access to digital devices or stable internet connectivity creates barriers to adopting AI in education	130	4.33	.85
AI tools sometimes provide inaccurate or misleading information, which affects the learning process	130	4.32	.95
The cost of implementing AI technologies in educational institutions is a significant challenge	130	3.66	1.20
AI-based systems lack the human understanding and emotional support that teachers provide	130	4.50	.673

Source: Primary Data

Interpretation: From the above table, the mean scores obtained depicted that the respondents were of the opinion of facing many challenges by using the AI Tools within the educational system and for many users, it demanded proper training for effective use, challenges related to limited access to the application, ethical use of the technology, cost of implementing the AI technology and data privacy were most important challenges that might be faced while adopting the AI technology. **Findings**

- AI significantly enhances personalized learning, making users more active and independent.□
- Learners experience higher engagement through interactive AI tools.□
- Performance improvement is evident due to adaptive feedback and real-time analytics.□
- Challenges include technology access, algorithmic bias, and privacy concerns.□

CONCLUSION

AI has emerged as a powerful catalyst for transforming education. It empowers learners with personalized guidance, flexible learning paths, and continuous feedback. The study demonstrates that AI-driven learning environments significantly enhance engagement, autonomy, and performance. However, ethical considerations, infrastructure readiness, and teacher training must be prioritized to achieve success.

REFERENCES

1. Abdelwahab, H. R., Rauf, A., & Chen, D. (2023). Business students' perceptions of Dutch higher educational institutions in preparing them for artificial intelligence work environments. *Industry and Higher Education*, 37(1), 22-34.□
2. Alam, A. (2021, November). Possibilities and apprehensions in the landscape of artificial intelligence in education. In 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA) (pp. 1-8). IEEE.□
3. Alotaibi, N. S., & Alshehri, A. H. (2023). Prospects and Obstacles in Using Artificial Intelligence in Saudi Arabia Higher Education Institutions—The Potential of AI-Based Learning Outcomes. *Sustainability*, 15(13), 10723.□
4. Bhounsule, P., Chaney, D., Claeys, L. and Manteufel, R. (2017), "Robotics service learning for improving learning outcomes and increasing community engagement" ASEE Gulf-Southwest Section Annual Conference Organized by The University of Texas at Dallas, American Society for Engineering Education□
5. Bondarenko, I., Severino, A., Olayode, I. O., Campisi, T., & Neduzha, L. (2022). Dynamic Sustainable Processes Simulation to Study Transport Object Efficiency. *Infrastructures*, 7(9), 124. <https://doi.org/10.3390/infrastructures7090124>□
6. Campbell-Kelly, M. (2018). Computer, Student Economy Edition. Routledge. Retrieved from <http://books.google.ie/books?id=YyZhDwAAQBAJ&printsec=frontcover&dq=C>

ampbellKelly,+M.+ (2018).+Computer,+Student+Economy+Edition:+A+History+of+the
e□ +Information+Machine.+Routledge.&hl=&cd=1&source=gbs_api

7. Chaudhry, M. A., & Kazim, E. (2021). Artificial Intelligence in Education (AIEd): a highlevel academic and industry note 2021. *AI And Ethics*, 2(1), 157–165. <https://doi.org/10.1007/s43681-021-00074-z>
8. Coppin, B. (2004). Artificial Intelligence Illuminated. Jones & Bartlett Learning. Retrieved from [http://books.google.ie/books?id=LcOLqodW28EC&printsec=frontcover&dq=Co□ppin,+B.+ \(2004\).+Artificial+intelligence+illuminated.+Jones+%26+Bartlett+Lea□rning.&hl=&cd=1&source=gbs_api](http://books.google.ie/books?id=LcOLqodW28EC&printsec=frontcover&dq=Co□ppin,+B.+ (2004).+Artificial+intelligence+illuminated.+Jones+%26+Bartlett+Lea□rning.&hl=&cd=1&source=gbs_api)
9. Forero-Corba, W., & Bennasar, F. N. (2024). Techniques and applications of Machine Learning and Artificial Intelligence in education: a systematic review. *RIEDRevista Iberoamericana de Educación a Distancia*, 27(1).
10. Haluza, D., & Jungwirth, D. (2023). Artificial Intelligence and Ten Societal Megatrends: An Exploratory Study Using GPT-3. *Systems*, 11(3), 120.
11. Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum, S. B., ... & Koedinger, K. R. (2021). Ethics of AI in education: Towards a community-wide framework. *International Journal of Artificial Intelligence in Education*, 1-23.
12. Limna, P., Jakwatanatham, S., Siripipattanakul, S., Kaewpuang, P., & Sriboonruang, P. (2022). A review of artificial intelligence (AI) in education during the digital era. *Advance Knowledge for Executives*, 1(1), 1-9.
13. Muktiarni, M., Widiaty, I., Abdullah, A. G., Ana, A., & Yulia, C. (2019, December). Digitalisation trend in education during industry 4.0. In *Journal of Physics: Conference Series* (Vol. 1402, No. 7, p. 077070). IOP Publishing.
14. Rane, J., Kaya, O., Mallick, S. K., & Rane, N. L. (2024). Artificial intelligence in education: A SWOT analysis of ChatGPT and its implications for practice and research. *Generative Artificial Intelligence in Agriculture, Education, and Business*, 142-161.
15. Surugiu, C., Grădinaru, C., & Surugiu, M. R. (2024). Artificial intelligence in business education: Benefits and tools. *Amfiteatru Economic*, 26(65), 241-258.
16. Wang, X., Lin, X., & Shao, B. (2023). Artificial intelligence changes the way we work: A close look at innovating with chatbots. *Journal of the Association for Information Science and Technology*, 74(3), 339-353.

17. Yang, H., & Shankar, A. (2023). Artificial Intelligence-Enabled Interactive System Modeling for Teaching and Learning Based on Cognitive Web Services. International Journal of e-Collaboration, 19(2).□