



**DEVELOPING NEXT GENERATION RADIOPHARMACEUTICALS  
FOR CANCER IMAGING AND THERAPY**

**\*Rabeya Akbarbasha<sup>1</sup>., Dr. Hermes R.S<sup>2</sup>., S. Avivarni<sup>3</sup>, R. Sivadharshini<sup>4</sup>,  
T. Manojkumar<sup>5</sup>**

<sup>1,5</sup> Assistant Professor., Swamy Vivekanandha College of Pharmacy,  
Elayampalayam,Tiruchengode -637 205, Namakkal (Dt).

<sup>2,3,4</sup> Swamy Vivekanandha College of Pharmacy (VMCH) Allied Health Sciences  
Elayampalayam, Tiruchencode -637 205, Namakkal (Dt).

**Article Received: 19 November 2025, Article Revised: 09 December 2025, Published on: 29 December 2025**

**\*Corresponding Author: Rabeya Akbarbasha**

Rabeya Akbarbasha Assistant Professor., Swamy Vivekanandha College of Pharmacy, Elayampalayam,Tiruchengode -637 205, Namakkal (Dt).

DOI: <https://doi-doi.org/101555/ijarp.4628>

## **ABSTRACT**

Radiopharmaceuticals play a pivotal role in modern oncology by enabling precise cancer diagnosis, staging, and targeted therapy through molecular imaging and radionuclide treatment. Conventional radiopharmaceuticals have significantly improved tumor detection and therapeutic outcomes; however, limitations such as suboptimal tumor specificity, off-target radiation exposure, and resistance mechanisms necessitate the development of next-generation agents. Advances in radiochemistry, molecular biology, and nanotechnology have accelerated the design of innovative radiopharmaceuticals with enhanced targeting accuracy and therapeutic efficacy. Next-generation radiopharmaceuticals integrate tumor-specific ligands, peptides, antibodies, and small molecules with novel radionuclides to achieve superior pharmacokinetics and favorable radiation dosimetry. The emergence of theranostic radiopharmaceuticals, which combine diagnostic and therapeutic capabilities within a single molecular platform, has revolutionized personalized cancer management by enabling patient-specific treatment planning and response monitoring. Radionuclides such as gallium-68, lutetium-177, actinium-225, and copper-64 have gained prominence due to their optimal physical properties for imaging and therapy. Furthermore, innovations in chelation chemistry and targeting vectors have improved in vivo stability and tumor uptake while minimizing toxicity to healthy tissues. Next-generation radiopharmaceuticals are also being explored for their potential in combination therapies, including immunotherapy and chemotherapy, to

enhance therapeutic synergy and overcome tumor heterogeneity. Despite these advancements, challenges remain in large-scale production, regulatory approval, and clinical translation. This article reviews recent developments in next-generation radiopharmaceuticals for cancer imaging and therapy, highlighting their design strategies, clinical applications, and future prospects. Continued interdisciplinary research and technological integration are essential to fully realize the potential of these advanced radiopharmaceuticals in precision oncology.

**KEYWORDS:** Radiopharmaceuticals; Cancer imaging; Targeted radionuclide therapy; Theranostics; PET/SPECT imaging; Precision oncology; Molecular imaging.

## 1. INTRODUCTION

Cancer remains one of the leading causes of morbidity and mortality worldwide, posing a significant challenge to healthcare systems despite remarkable advances in diagnosis and treatment. Early and accurate detection, precise tumor characterization, and effective therapeutic intervention are critical determinants of patient outcomes. Conventional diagnostic imaging techniques and systemic cancer therapies often lack the specificity required to distinguish malignant tissues from normal cells, resulting in delayed diagnosis, suboptimal treatment efficacy, and increased adverse effects.<sup>1</sup> In this context, radiopharmaceuticals have emerged as powerful tools that bridge the gap between diagnosis and therapy by enabling non invasive visualization of molecular and cellular processes within tumors.

Radiopharmaceuticals are radioactive compounds designed to target specific biological pathways or receptors associated with cancer.<sup>2</sup> When administered to patients, these agents selectively accumulate in tumor tissues, allowing functional imaging using modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), as well as targeted radionuclide therapy. Traditional radiopharmaceuticals have demonstrated significant clinical value; however, their broader application is often limited by issues such as insufficient tumor selectivity, unfavorable pharmacokinetics, radiation exposure to healthy tissues, and limited therapeutic efficacy in aggressive or heterogeneous tumors.<sup>3</sup>

Recent advancements in radiochemistry, molecular targeting strategies, and nuclear medicine have catalyzed the development of next generation radiopharmaceuticals with improved

specificity and multifunctional capabilities. These novel agents incorporate highly selective targeting ligands, optimized radionuclides, and advanced chelation systems to enhance tumor uptake, *in vivo* stability, and therapeutic precision.<sup>4</sup> The advent of theranostic radiopharmaceuticals, which combine diagnostic imaging and therapy within a single molecular framework, has further transformed cancer care by supporting personalized treatment planning and real-time monitoring of therapeutic response.

This article aims to review the evolving landscape of next-generation radiopharmaceuticals for cancer imaging and therapy, emphasizing their design principles, clinical applications, and future potential in precision oncology.

## **2.Types of Radionuclides Used in Next-Generation Radiopharmaceuticals**

Radionuclides are the core components of radiopharmaceuticals, as their physical and chemical properties determine the effectiveness of cancer imaging and therapy.<sup>5</sup> The selection of an appropriate radionuclide depends on factors such as type of radiation emitted, half life, energy, and compatibility with targeting vectors. Next generation radiopharmaceuticals utilize a wide range of radionuclides optimized for diagnostic imaging, therapeutic applications, or combined theranostic use (Table 1).

For diagnostic purposes, positron-emitting radionuclides such as fluorine-18 and gallium-68 are widely employed in PET imaging due to their high sensitivity and excellent spatial resolution.<sup>6</sup> These radionuclides enable accurate visualization of tumor metabolism, receptor expression, and molecular signaling pathways. Single-photon emitters like technetium-99m remain important in SPECT imaging because of their favorable half-life and widespread availability.<sup>7</sup>

Therapeutic radiopharmaceuticals primarily use beta or alpha emitting radionuclides. Beta emitters such as lutetium-177 and yttrium-90 deliver cytotoxic radiation over a short tissue range, making them effective for treating medium sized tumors while sparing surrounding healthy tissues.<sup>8</sup> Alpha emitters, including actinium-225 and bismuth-213, are gaining increasing attention due to their high linear energy transfer and potent cell killing ability, particularly against micrometastases and resistant cancer cells.

The emergence of theranostic radionuclide pairs has significantly advanced personalized oncology. These pairs use chemically similar radionuclides for imaging and therapy, allowing

clinicians to predict therapeutic response and optimize radiation dose before treatment. The integration of suitable radionuclides with advanced targeting ligands has improved tumor specificity, reduced systemic toxicity, and enhanced clinical outcomes.

**Table 1: Commonly used radionuclides and their applications.**

| Radionuclide          | Radiation Type               | Half-life | Application              | Imaging Modality / Use |
|-----------------------|------------------------------|-----------|--------------------------|------------------------|
| <b>Fluorine-18</b>    | Positron ( $\beta^+$ )       | 110 min   | Diagnosis                | PET imaging            |
| <b>Gallium-68</b>     | Positron ( $\beta^+$ )       | 68 min    | Diagnosis / Theranostics | PET imaging            |
| <b>Technetium-99m</b> | Gamma ( $\gamma$ )           | 6 h       | Diagnosis                | SPECT imaging          |
| <b>Lutetium-177</b>   | Beta ( $\beta^-$ ), $\gamma$ | 6.7 days  | Therapy / Theranostics   | PRRT                   |
| <b>Actinium-225</b>   | Alpha ( $\alpha$ )           | 10 days   | Targeted therapy         | Alpha therapy          |

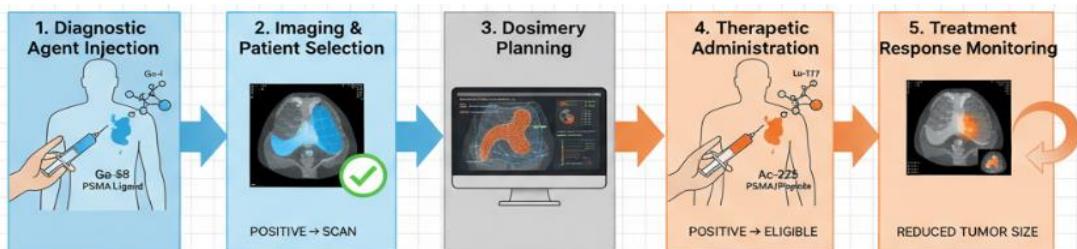
### 3. Targeting Vectors In Next Generation Radiopharmaceuticals

Targeting vectors are critical components of radiopharmaceuticals, as they determine the selective delivery of radioactive payloads to cancer cells while minimizing uptake in normal tissues. Advances in molecular biology and medicinal chemistry have led to the development of highly specific targeting vectors that recognize tumor-associated receptors, antigens, or metabolic pathways.<sup>9</sup> These vectors enhance tumor localization, improve imaging contrast, and increase therapeutic efficacy in next-generation radiopharmaceuticals.

Peptides are among the most widely used targeting vectors due to their small size, rapid tissue penetration, and favorable pharmacokinetics. Peptide-based radiopharmaceuticals, such as those targeting somatostatin receptors, have demonstrated excellent clinical success in both diagnostic imaging and peptide receptor radionuclide therapy.<sup>10</sup> Antibodies and antibody fragments offer high specificity and strong binding affinity toward tumor associated antigens, making them suitable for radioimmunoimaging and radioimmunotherapy. However, their larger molecular size often results in slower clearance and prolonged radiation exposure, prompting the development of engineered antibody fragments to overcome these limitations.

Small molecules represent another important class of targeting vectors, particularly for cancers that overexpress specific enzymes or transporters. Prostate-specific membrane antigen (PSMA) ligands are a prominent example, showing high tumor uptake and excellent therapeutic outcomes in prostate cancer management. In addition, nanocarriers and

biomimetic systems are emerging as innovative targeting platforms capable of delivering multiple radionuclides or therapeutic agents simultaneously.


The selection of an appropriate targeting vector depends on tumor biology, receptor expression, and intended clinical application. Continued optimization of targeting strategies is essential to enhance specificity, reduce toxicity, and expand the clinical utility of next generation radiopharmaceuticals in precision oncology.

#### **4. Theranostic Approach In Cancer Imaging And Therapy**

The theranostic approach represents a major paradigm shift in oncology by integrating diagnostic imaging and targeted therapy into a single, patient specific treatment strategy. In radiopharmaceutical science, theranostics involves the use of structurally similar or identical molecules labeled with different radionuclides for diagnosis and therapy. This approach allows accurate tumor visualization, individualized dosimetry, and real-time assessment of therapeutic response, thereby advancing precision oncology.<sup>11</sup>

In cancer imaging, diagnostic radionuclides such as gallium-68 or fluorine-18 are used to identify receptor expression and tumor burden through PET or SPECT imaging. Patients demonstrating sufficient radiotracer uptake are then selected for therapy using the same targeting vector labeled with a therapeutic radionuclide, such as lutetium-177 or actinium-225. This patient-selection process improves treatment efficacy while minimizing unnecessary radiation exposure in non responders. The theranostic model has shown remarkable success in prostate cancer and neuroendocrine tumors, where PSMA and somatostatin receptor-based agents are widely used in clinical practice.

Theranostic radiopharmaceuticals also enable personalized dose optimization by correlating imaging data with radiation absorbed dose, enhancing treatment safety and outcomes. Furthermore, they facilitate early detection of treatment resistance and disease progression, allowing timely modification of therapeutic strategies.<sup>12</sup> The integration of alpha emitting radionuclides into theranostic platforms has further expanded therapeutic options, particularly for metastatic and treatment-resistant cancers, due to their high cytotoxic potential and limited tissue penetration.



**Figure 1: Schematic representation of the theranostic approach in cancer imaging and therapy.**

Despite their clinical promise, theranostic radiopharmaceuticals face challenges related to radiochemistry, large-scale production, regulatory approval, and cost effectiveness. Nevertheless, ongoing research and technological advancements continue to refine theranostic platforms, positioning them as a cornerstone of next generation cancer management. The theranostic approach exemplifies the future of radiopharmaceutical development by aligning molecular imaging with targeted therapy to achieve truly personalized cancer care.

## 5. Radiochemistry and Chelation Strategies In Next Generation Radiopharmaceuticals

Radiochemistry plays a fundamental role in the development of next generation radiopharmaceuticals, as it governs the successful incorporation of radionuclides into biologically active molecules while preserving their targeting capability. Efficient radiolabeling, *in vivo* stability, and reproducibility are essential requirements for clinical translation.<sup>13</sup> Advances in radiochemistry have enabled the production of highly stable, tumor-specific radiopharmaceuticals suitable for both diagnostic imaging and targeted therapy.

Chelation chemistry is particularly crucial for metallic radionuclides such as gallium-68, lutetium-177, copper-64, and actinium-225.<sup>14</sup> Chelators act as molecular cages that securely bind radionuclides and link them to targeting vectors such as peptides, antibodies, or small molecules. Commonly used chelators include DOTA, NOTA, and DTPA, each offering specific advantages in terms of binding strength, labeling conditions, and biological stability. For example, DOTA is widely used in theranostic applications due to its ability to form stable complexes with both diagnostic and therapeutic radionuclides.

Recent innovations focus on developing novel chelators that allow rapid labeling under mild conditions, thereby preserving the structural integrity of sensitive biomolecules. This is

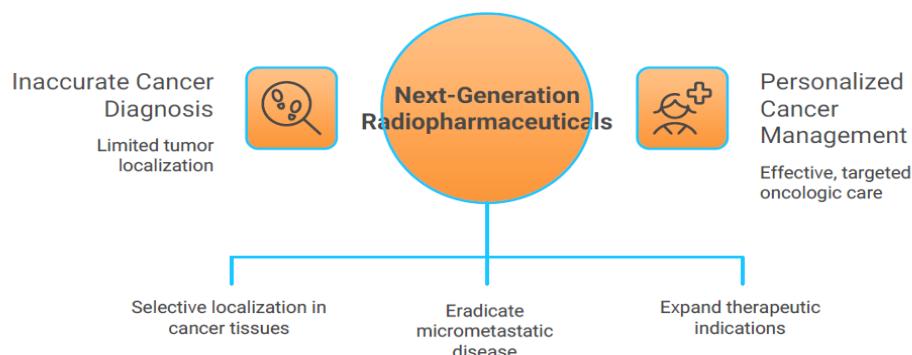
especially important for short lived radionuclides and temperature sensitive targeting vectors. Additionally, improved chelation strategies reduce the release of free radionuclides *in vivo*, minimizing non-specific radiation exposure and toxicity to healthy organs such as the liver, kidneys, and bone marrow.

Radiochemistry advancements have also facilitated kit based formulations, enabling on site preparation of radiopharmaceuticals in clinical nuclear medicine settings.<sup>15</sup> These developments enhance accessibility, reduce preparation time, and improve standardization across institutions. Despite these advances, challenges remain in scaling up production, ensuring regulatory compliance, and maintaining quality control.

Optimized radiochemistry and chelation strategies are central to the success of next-generation radiopharmaceuticals, supporting safer, more effective, and widely applicable cancer imaging and therapeutic solutions.

## **6. Clinical Applications Of Next Generation Radiopharmaceuticals In Cancer**

Next-generation radiopharmaceuticals have demonstrated significant clinical impact across a wide range of malignancies by enabling precise tumor imaging and targeted radionuclide therapy. Their ability to selectively localize in cancer tissues has transformed both diagnostic accuracy and therapeutic outcomes, particularly in tumors characterized by specific molecular targets. Clinical applications continue to expand as new targeting ligands and radionuclides are translated from bench to bedside.<sup>16</sup>


In prostate cancer, radiopharmaceuticals targeting prostate specific membrane antigen (PSMA) represent one of the most successful examples of theranostic application. PSMA based PET imaging using gallium-68 or fluorine-18 allows accurate detection of primary and metastatic lesions, even at low prostate specific antigen levels. Subsequent treatment with lutetium-177 or actinium-225 labeled PSMA ligands has shown substantial improvement in progression-free survival and symptom control in advanced and metastatic prostate cancer patients.

Neuroendocrine tumors (NETs) are another area where next generation radiopharmaceuticals have achieved remarkable success. Somatostatin receptortargeted imaging and peptide receptor radionuclide therapy (PRRT) enable both staging and treatment of well

differentiated NETs. Lutetium-177 labeled somatostatin analogs have become standard therapeutic options, offering effective tumor control with manageable toxicity profiles.

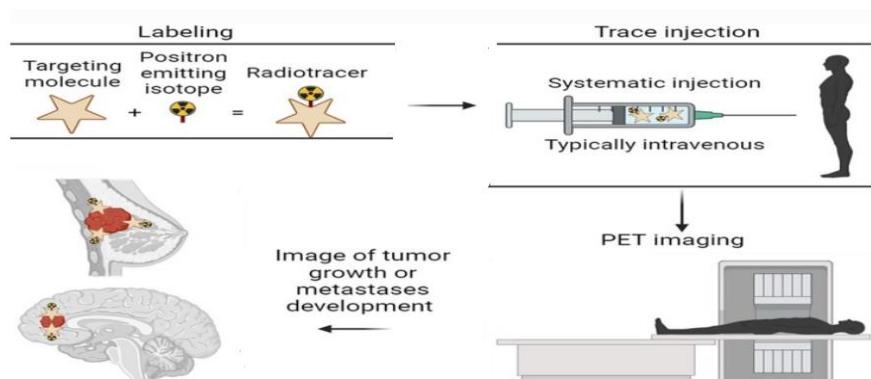
Beyond prostate cancer and NETs, radiopharmaceuticals are increasingly being explored in breast cancer, thyroid cancer, gliomas, and hematological malignancies.<sup>17</sup> Novel agents targeting HER2, fibroblast activation protein (FAP), and chemokine receptors show promising results in early phase clinical trials. Additionally, alpha emitting radiopharmaceuticals are gaining attention for their ability to eradicate micrometastatic disease due to their high cytotoxic potential and limited tissue penetration.

Despite their clinical success, challenges such as patient selection, dosimetry optimization, and long-term toxicity monitoring remain. Continued clinical research and multicenter trials are essential to expand the therapeutic indications and establish standardized treatment protocols. Overall, next generation radiopharmaceuticals are redefining cancer management by enabling personalized, targeted, and effective oncologic care.



**Figure 2: Targeted Radiopharmaceuticals Revolutionize Cancer Care.**

## 7. Safety, Toxicity, and Dosimetry Considerations In Radiopharmaceutical Therapy


Safety and toxicity assessment are critical components in the clinical application of next-generation radiopharmaceuticals, as these agents deliver ionizing radiation directly to tumor tissues while posing potential risks to healthy organs. Although targeted radionuclide therapy offers improved specificity compared to conventional radiotherapy, careful evaluation of radiation dose distribution and organ tolerance is essential to ensure patient safety and treatment efficacy.

Dosimetry plays a central role in radiopharmaceutical therapy by estimating the absorbed radiation dose delivered to tumors and critical organs such as the kidneys, bone marrow, liver, and salivary glands. Personalized dosimetry, guided by diagnostic imaging, allows optimization of therapeutic dose while minimizing toxicity. The theranostic approach facilitates this process by using diagnostic radionuclide imaging to predict therapeutic radiation exposure and treatment response. Advances in quantitative PET and SPECT imaging have significantly improved dosimetric accuracy and treatment planning.<sup>18</sup>

The toxicity profile of radiopharmaceuticals depends on factors such as radionuclide type, radiation emission characteristics, biological half-life, and targeting vector. Beta emitting radionuclides, such as lutetium-177, are generally associated with manageable toxicity, including transient bone marrow suppression and mild renal effects. In contrast, alpha emitting radionuclides deliver highly potent radiation over a very short range, increasing therapeutic efficacy but also raising concerns regarding off target toxicity if biodistribution is not well controlled.

Strategies to reduce toxicity include the use of renal protection protocols, optimized dosing schedules, improved chelation chemistry, and development of highly specific targeting ligands. Long term follow up studies are essential to monitor delayed adverse effects, secondary malignancies, and cumulative radiation exposure.

Advancements in safety assessment and dosimetry have enhanced the therapeutic window of next generation radiopharmaceuticals. Continued refinement of these strategies is vital for expanding clinical indications and ensuring the safe integration of targeted radionuclide therapy into routine oncology practice.



**Figure 3: Safety, Toxicity, And Dosimetry Considerations In Radiopharmaceutical Therapy.**

## **8. Challenges, Limitations, And Future Perspectives Of Next-Generation Radiopharmaceuticals**

Despite the remarkable progress in the development and clinical application of next generation radiopharmaceuticals, several challenges continue to limit their widespread adoption and full therapeutic potential. One of the primary challenges lies in the complex production and supply chain of medical radionuclides. Many therapeutic and diagnostic radionuclides require specialized facilities, cyclotrons, or nuclear reactors, which restrict availability, particularly in low and middle income regions. Short half lives of certain radionuclides further complicate transportation and on-site preparation.

Regulatory and manufacturing hurdles also present significant barriers. Radiopharmaceuticals must meet stringent quality control, safety, and regulatory requirements, often involving complex approval processes.<sup>19</sup> Standardization of radiolabeling procedures, dosimetry protocols, and clinical guidelines remains inconsistent across institutions, hindering large scale clinical implementation. Additionally, the high cost associated with development, infrastructure, and skilled personnel can limit patient access to advanced radiopharmaceutical therapies.

Biological challenges such as tumor heterogeneity, variable receptor expression, and treatment resistance can affect targeting efficiency and therapeutic outcomes. Off target radiation exposure, particularly to organs such as the kidneys and salivary glands, continues to be a concern, especially with repeated treatment cycles or alpha emitting radionuclides. Long term safety data are still limited, necessitating extended follow up studies to fully understand late adverse effects.

Looking forward, future research is focused on the development of novel targeting ligands, improved chelation systems, and innovative radionuclide combinations to enhance tumor specificity and reduce toxicity. Advances in artificial intelligence, quantitative imaging, and personalized dosimetry are expected to further optimize treatment planning and outcome prediction.<sup>20</sup> Integration of radiopharmaceuticals with immunotherapy and other systemic treatments represents a promising strategy to overcome resistance and improve therapeutic efficacy. Overcoming current challenges through interdisciplinary collaboration and technological innovation will be essential to fully realize the potential of next-generation radiopharmaceuticals in precision cancer care.

## 9. CONCLUSION

Next-generation radiopharmaceuticals have emerged as a transformative modality in cancer imaging and therapy, offering highly targeted, personalized, and effective approaches to oncologic care. By integrating advances in radionuclide selection, targeting vectors, radiochemistry, and theranostic strategies, these agents enable precise tumor localization, improved treatment planning, and real time monitoring of therapeutic response. The successful clinical application of radiopharmaceuticals in cancers such as prostate cancer and neuroendocrine tumors highlights their significant potential to improve patient outcomes while minimizing systemic toxicity.

The evolution of theranostic platforms represents a major milestone in precision oncology, allowing seamless transition from diagnosis to therapy using the same molecular targeting framework. Furthermore, improvements in chelation chemistry, dosimetry, and safety assessment have expanded the therapeutic window of targeted radionuclide therapy. Emerging alpha emitting radiopharmaceuticals and combination strategies with immunotherapy and chemotherapy offer promising solutions for treatment-resistant and metastatic cancers.

Despite these advancements, challenges related to radionuclide availability, regulatory pathways, manufacturing complexity, and long term safety remain. Addressing these limitations will require continued interdisciplinary collaboration among nuclear medicine specialists, chemists, oncologists, and regulatory authorities. Future developments focusing on novel molecular targets, artificial intelligence assisted dosimetry, and global accessibility are expected to further advance the field.

In summary, next generation radiopharmaceuticals represent a cornerstone of modern cancer management, bridging diagnostic imaging and targeted therapy. Continued research and clinical translation will be essential to fully harness their potential and establish them as standard components of precision cancer care.

## REFERENCES

1. Ali Z, Hamdoun A, Alattaya A. Advances in radiological techniques for cancer diagnosis: A narrative review of current technologies.
2. Khalaji A, Rostampour M, Riahi F, Rafieezadeh D, Tabatabaei SA, Fesharaki S, Tooyserkani SH. The use of radiopharmaceuticals in targeted cancer therapy: a narrative

- review. International Journal of Physiology, Pathophysiology and Pharmacology. 2025 Apr 25;17(2):37.
3. Straehla JP, Warren KE. Pharmacokinetic principles and their application to central nervous system tumors. *Pharmaceutics*. 2020 Oct 6;12(10):948.
  4. Zhang S, Zhang A, Qi X, Han Z, Song L, Zhou J, Wang G, Zhu R, Li J. Radionuclide-Labeled Biomaterials: A Novel Strategy for Tumor-Targeted Therapy. *Biomimetics*. 2025 Jun 11;10(6):394.
  5. Varghese TP, John A, Mathew J. Revolutionizing cancer treatment: the role of radiopharmaceuticals in modern cancer therapy. *Precision Radiation Oncology*. 2024 Sep;8(3):145-52.
  6. Tansey SS, Thompson S, Scott PJ, Brooks AF. Gallium-68: Methodology and novel radiotracers for positron emission tomography (2012–2017). *Pharmaceutical patent analyst*. 2018 Sep 1;7(5):193-227.
  7. Crişan G, Moldovean-Cioroianu NS, Timaru DG, Andries G, Căinap C, Chiş V. Radiopharmaceuticals for PET and SPECT imaging: a literature review over the last decade. *International journal of molecular sciences*. 2022 Apr 30;23(9):5023.
  8. Kıracı S. Fundamentals of radiation safety and dosimetric approach in radionuclide therapy applications. In *Radionuclide Therapy* 2022 Aug 2 (pp. 29-62). Cham: Springer International Publishing.
  9. Thanki K, Kushwah V, Jain S. Recent advances in tumor targeting approaches. Targeted drug delivery: concepts and design. 2014 Nov 5:41-112.
  10. Khalily MP, Soydan M. Peptide-based diagnostic and therapeutic agents: Where we are and where we are heading?. *Chemical Biology & Drug Design*. 2023 Mar;101(3):772-93.
  11. Gandhi N, Alaseem AM, Deshmukh R, Patel A, Alsaidan OA, Fareed M, Alasiri G, Patel S, Prajapati B. Theranostics in nuclear medicine: The era of precision oncology. *Medical Oncology*. 2025 Nov;42(11):1-21.
  12. Zafar S, Hafeez A, Shah H, Mutiullah I, Ali A, Khan K, Figueroa-González G, Reyes-Hernández OD, Quintas-Granados LI, Peña-Corona SI, Kiyekbayeva LN. Emerging biomarkers for early cancer detection and diagnosis: challenges, innovations, and clinical perspectives. *European Journal of Medical Research*. 2025 Aug 18;30(1):760.
  13. Núñez-Salinas A, Parra-Garretón C, Acuña D, Peñaloza S, Günther G, Bollo S, Arriagada F, Morales J. Nanoradiopharmaceuticals: Design principles, radiolabeling strategies, and biomedicine applications. *Pharmaceutics*. 2025 Jul 14;17(7):912.

14. Holland JP. The Radiopharmaceutical chemistry of seldom-used radionuclides in nuclear medicine. In *Radiopharmaceutical Chemistry* 2019 Apr 3 (pp. 425-446). Cham: Springer International Publishing.
15. Thompson S, Scott PJ. Equipment and instrumentation for radiopharmaceutical chemistry. In *Radiopharmaceutical Chemistry* 2019 Apr 3 (pp. 481-499). Cham: Springer International Publishing.
16. Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical advances and perspectives in targeted radionuclide therapy. *Pharmaceutics* 2023; 15: 1733 [Internet]. 2023
17. Christodoulou RC, Papageorgiou PS, Pitsilos R, Woodward A, Papageorgiou SG, Solomou EE, Georgiou MF. A narrative review of theranostics in Neuro-Oncology: advancing brain tumor diagnosis and treatment through nuclear medicine and artificial intelligence. *International Journal of Molecular Sciences*. 2025 Jul 31;26(15):7396.
18. Tran-Gia J, Cicone F, Koole M, Giammarile F, Gear J, Deshayes E, Gabiña PM, Cremonesi M, Wadsley J, Bernhardt P, Bardies M. Rethinking dosimetry: A European perspective. *Journal of Nuclear Medicine*. 2025 May 22.
19. Suliman Z. A qualitative evaluation on the appropriateness of the current regulatory guidelines, on the manufacture of medicines within the radiopharmaceutical industry.
20. Moraitis A, Kueper A, Tran-Gia J, Eberlein U, Chen Y, Seifert R, Shi K, Kim M, Herrmann K, Costa PF, Kersting D. Future perspectives of artificial intelligence in bone marrow dosimetry and individualized radioligand therapy. In *Seminars in nuclear medicine* 2024 Jul 1 (Vol. 54, No. 4, pp. 460-469). WB Saunders.