Review Article

Volume: 01 Issue: 02

International Journal Advanced Research Publications

EFFICACY OF EARLY WARNING SYSTEMS AND COMMUNITY RESPONSE MECHANISMS IN FLOOD MITIGATION: A REVIEW

Mohammed Musa Gasma*1 and Isiyaku Alhaji Musa²

¹Department of Biology, Umar Suleiman College of Education Gashua, P.M.B 02 Gashua, Yobe state Nigeria.

²Entomology Section, Cocoa Research Institute of Nigeria, P.M.B 5244, Ibadan, Oyo State, Nigeria.

Article Received: 17 October 2025, Article Revised: 06 November 2025, Published on: 26 November 2025

*Corresponding Author: Mohammed Musa Gasma

Department of Biology, Umar Suleiman College of Education Gashua, P.M.B 02 Gashua, Yobe state Nigeria.

DOI: https://doi-doi.org/101555/ijarp.3440

ABSTRACT

The increasing frequency and intensity of flood events, exacerbated by climate change and rapid urbanization, pose a significant global threat. In response, the development and implementation of Early Warning Systems (EWS) have become a cornerstone of disaster risk reduction strategies. This review synthesizes the recent literature (2019-2024) to critically evaluate the efficacy of flood EWS, with a specific focus on the indispensable role of community-based response mechanisms. The analysis reveals that while technological advancements in forecasting, data collection, and communication have dramatically improved the technical capability of EWS, their ultimate effectiveness in saving lives and reducing losses is contingent upon a robust integration of social components. Key factors for success include community trust, local knowledge, clear and actionable warning messages, and pre-established evacuation plans. The paper identifies a critical shift in the paradigm from a top-down, technology-centric model to a people-centred end-to-end and "last-mile" approach. Despite progress, challenges remain, including ensuring equity in access for marginalized groups, sustainable financing for community-level activities, and the integration of EWS into broader climate adaptation frameworks. The conclusion underscores that the most effective flood mitigation outcomes are achieved when state-of-the-art technology is seamlessly coupled with empowered, prepared, and responsive communities.

KEYWORDS: Early Warning System, Flood Mitigation and Community-Based Disaster Risk Reduction.

INTRODUCTION

Floods are among the most common and destructive natural hazards, affecting millions of people worldwide and causing substantial economic losses annually (World Meteorological Organization WMO, 2021). The Intergovernmental Panel on Climate Change (IPCC) has highlighted with high confidence that the frequency and intensity of heavy precipitation events have increased over most land regions, a trend projected to continue with further global warming (IPCC, 2022). In this context, proactive disaster risk reduction strategies are paramount (IPCC, 2022).

Early Warning Systems (EWS) represent a critical line of defense. The United Nations Office for Disaster Risk Reduction (UNDRR) defines an effective EWS as an integrated system of hazard monitoring, forecasting and prediction, disaster risk assessment, communication and preparedness activities that enables individuals, communities and governments to take timely action to reduce disaster risks in advance of hazardous events (UNDRR, 2019). The traditional model of EWS often emphasized the technological components gauges, satellites, and modelling software (UNDRR, 2019). However, a growing body of evidence from the past five years underscores that a system is only as effective as the response (Coughlan de Perez et al., 2022). This review, therefore, aims to critically analyze the scientific literature from 2019 to 2024 to answer the central question: What is the collective efficacy of technological Early Warning Systems and community-led response mechanisms in achieving successful flood mitigation?

The Evolution of Technological Components in Flood EWS

Technological advancements have revolutionized flood forecasting and warning dissemination (Mosavi et al., 2021). Recent progress can be categorized into several key areas:

Improved Forecasting and Modelling: The integration of Artificial Intelligence (AI) and Machine Learning (ML) with traditional hydrological models has enhanced the accuracy and lead time of flood predictions (Mosavi et al., 2021). These models can now process vast datasets from remote sensing, weather radar, and IoT-based sensors to provide more localized and probabilistic forecasts (Mosavi et al., 2021).

High-Resolution Data and Remote Sensing: The use of Unmanned Aerial Vehicles (UAVs or drones) and satellite constellations (e.g., Sentinel-1) allows for rapid pre- and post-event mapping, improving situational awareness and damage assessment (Tourian et al., 2022).

Dissemination Technologies: Beyond traditional media (radio, television), digital platforms have become crucial. Mobile phone alerts via SMS or cell broadcast, social media integrations, and dedicated mobile applications have expanded the reach of warnings significantly (Wang and Wang, 2023).

Despite these advancements, a persistent problem remains, where warnings fail to reach the most vulnerable populations at the grassroots level, highlighting that technology alone is an insufficient solution (Wang and Wang, 2023).

The Critical Role of Community Response Mechanisms

The efficacy of a warning is zero if it does not trigger an appropriate response (Wang and Wang, 2023). This is where community-based mechanisms become the linchpin of the entire system.

Bridging the Last-Mile: Community-based EWS (CBEWS) decentralize warning dissemination and response. Local volunteers, often trained by NGOs or government agencies, act as force multipliers, translating official warnings into context-specific, actionable advice for their neighbours (Garcia and Fearnley, 2022). This local intermediary role builds trust, which is a currency more valuable than any raw data stream.

Integration of Local and Indigenous Knowledge: Communities living in flood-prone areas often possess generations of accumulated knowledge about local weather patterns, river behaviour, and safe havens (Garcia and Fearnley, 2022). Integrating this knowledge with scientific forecasts creates a more robust and culturally appropriate warning system (Ifejika Speranza, 2021). Studies have shown that communities are more likely to trust and act upon warnings that resonate with their own observations and experiences (Ifejika Speranza, 2021). Actionable Warnings and Preparedness Drills: A warning message must be clear, consistent, and contain specific guidance (e.g., "Evacuate to the community centre now"). Community response is strengthened through regular simulation exercises and the development of local evacuation plans that identify routes, shelters, and special assistance for the elderly and disabled (López et al., 2023).

Synergy and Integration

The "End-to-End" Paradigm

The most significant finding in recent literature is the move towards integrated, "end-to-end" EWS. This paradigm recognizes that the four core components (1) disaster risk knowledge, (2) monitoring and warning, (3) dissemination and communication, and (4) response capability must be developed in a coordinated manner (WMO, 2021).

Successful case studies from countries like Bangladesh and Japan demonstrate this synergy. Bangladesh's Cyclone Preparedness Programme, which combines a sophisticated forecasting system with a network of 76,000 volunteers, has been instrumental in reducing cyclone mortality rates a model applicable to floods (Paul, 2021). Similarly, the concept of "Forecast-based Financing" (FbF), where pre-defined actions (e.g., distributing purification tablets, evacuating) are automatically triggered by a specific forecast threshold, directly links early warning to early action, often at the community level (Coughlan de Perez et al., 2022).

Persistent Challenges and Future Directions

Despite the progress, several challenges impede the optimal efficacy of EWS:

Social Vulnerability and Equity: EWS must be designed with equity in mind. The poor, elderly, disabled, and women often face barriers to receiving warnings and evacuating. Systems must be inclusive by design, using multiple communication channels and ensuring assistance plans are in place (Scolobig et al., 2021).

Sustainability of Community Programs: Volunteer-based systems can suffer from high turnover, donor dependency, and a lack of long-term funding. Integrating these programs into local government structures is crucial for their longevity.

False Alarms and Warning Fatigue: Overly cautious forecasts or false alarms can erode public trust over time, leading to warning fatigue and non-compliance. Improving forecast accuracy and communicating uncertainty transparently are essential to maintaining credibility (Potter et al., 2023).

Compound and Cascading Hazards: Modern EWS must evolve to address compound events, such as concurrent storm surges and riverine floods, or cascading failures like dam breaches following extreme rainfall.

Future directions include leveraging the Internet of Things (IoT) for hyper-local monitoring, using serious games to enhance community preparedness, and more deeply integrating EWS with climate adaptation and urban planning policies.

CONCLUSION

The evidence from the last five years is unequivocal, the efficacy of Early Warning Systems in flood mitigation is not merely a function of technological sophistication but is fundamentally dependent on the effectiveness of community response mechanisms. The most accurate forecast is rendered useless if it does not reach the people at risk in an understandable format and if those people are not empowered and prepared to act. The paradigm has successfully shifted from a top-down, technology-driven model to a people-centred, "end-to-end" approach that values local knowledge, trust, and pre-coordinated action. The future of flood mitigation lies in continuing to strengthen this synergy, ensuring that advanced warning technology serves to empower resilient communities, thereby turning the rising tide of flood risk into a manageable challenge.

ACKNOWLEDGEMENTS

The author is deeply indebted to Yobe state Emergency Management Agency and Umar Suleiman College of Education Gashua their support in the persuade of this work.

REFERENCES

- Coughlan de Perez, E., van den Hurk, B., van Aalst, M. K., Jongman, B., Klose, T., and Suarez, P. (2022). Forecast-based financing: An approach for catalyzing humanitarian action based on extreme weather and climate forecasts. Climate Risk Management, 35, 100401.
- 2. Garcia, C., and Fearnley, C. J. (2022). Evaluating critical links in early warning systems for natural hazards. Environmental Hazards, 21(1), 1-21.
- 3. Ifejika Speranza, C. (2021). Bridging knowledge systems through participatory vulnerability assessment in the context of climate change adaptation in Tanzania. Climate and Development, 13(5), 389-402.
- 4. IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

- 5. López, M. S., Boccardi, P., and Sitas, N. (2023). Evaluating the impact of community drills on protective action decision-making in flood events. International Journal of Disaster Risk Reduction, 84, 103454.
- 6. Mosavi, A., Ozturk, P., and Chau, K. W. (2021). Flood prediction using machine learning models: A literature review. Water, 13(14), 1916.
- 7. Paul, S. K. (2021). Community response to cyclone warnings in Bangladesh: A comparative study of two coastal villages. Natural Hazards, 109(2), 1965-1987.
- 8. Potter, S. H., Kreft, P. V., Milojev, P., Noble, C., Montz, B., Dhellemmes, A., ... and Woods, R. (2023). The influence of impact-based severe weather warnings on risk perceptions and intended protective actions: A meta-analysis. International Journal of Disaster Risk Reduction, 86, 103535.
- 9. Scolobig, A., Prior, T., Schröter, D., Jörin, J., and Patt, A. (2021). Towards people-centred approaches in flood early warning systems. Environmental Science and Policy, 123, 31-40.
- Tourian, M. J., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., and Sneeuw, N. (2022).
 Spatiotemporal densification of river water level time series by multimission satellite altimetry. Remote Sensing of Environment, 279, 113109.
- 11. UNDRR. (2019). Global Assessment Report on Disaster Risk Reduction (GAR). United Nations Office for Disaster Risk Reduction.
- 12. Wang, Z., and Wang, H. (2023). A comprehensive review of social media use in disaster warning, response, and recovery. Safety Science, 159, 106033.
- 13. World Meteorological Organization (WMO). (2021). 2021 State of Climate Services: Water. WMO-No. 1278.